Shape optimization for an elliptic operator with infinitely many positive and negative eigenvalues

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape Optimization Problems for Eigenvalues of Elliptic Operators

We consider a general formulation for shape optimization problems involving the eigenvalues of the Laplace operator. Both the cases of Dirichlet and Neumann conditions on the free boundary are studied. We survey the most recent results concerning the existence of optimal domains, and list some conjectures and open problems. Some open problems are supported by efficient numerical computations.

متن کامل

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

Elliptic operator for shape analysis

Many shape analysis methods treat the geometry of an object as a metric space that can be captured by the Laplace-Beltrami operator. In this paper, we propose to adapt a classical operator from quantum mechanics to the field of shape analysis where we suggest to integrate a scalar function through a unified elliptical Hamiltonian operator. We study the addition of a potential function to the La...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Nonlinear Analysis

سال: 2018

ISSN: 2191-9496,2191-950X

DOI: 10.1515/anona-2015-0171